Reactive Power-Voltage Coordinated Control of Offshore
Wind Farm Based on Multi-Agent Reinforcement Learning

Abstract: This paper proposes a distributed reactive power-voltage (Q-V) coordinated control
approach based on multi-agent deep reinforcement learning algorithm. Firstly, the Q-V control
problem is formulated as a Markov game where all wind turbines (WTs) on each feeder is modeled
as an adaptive agent. Secondly, the policy networks of each agent are trained by the advanced multi-
agent deep deterministic policy gradient method. Then, the trained policy networks are executed in
a distributed manner to control the voltage. The proposed method can significantly reduce the
requirements of communications and knowledge of system parameters. It also effectively deals with
uncertainties and can provide online coordinated control only based on local information. The
simulation results of connecting the wind farm with the IEEE 14-bus system demonstrate the
effectiveness and benefits of the proposed approach.
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I. INTRODUCTION

Offshore wind energy is one of the impactful waysgdtopalleviate the current energy and
environmental concerns [1.1-1.2]. However, due to offshiore wind’s uncéftaintics and volatility
characteristics, its higher integration brings numerous technical challenges'to the voltage control of
offshore wind farms. Meanwhile, offshore wind farms are mainly connected/to the grid by AC
transmission. Due to the capacitive effect of the AC submarine cable, & large amount of charging
power increases the voltage at the end of the cable [2.1, 2.2], which 1é8ults in a lower voltage
stability margin of the WT. In addition, it is diffieult and costly”to install reactive power
compensation equipment in an offshore wind farml Therefore, the Q-V coordinated control of WTs
is essential and is more economical in @n offshore\wind'tarm [2.3].

The Q-V coordinated control methodgbased‘on ORE. theory, determines the reactive power
output of each WT according to the'status®0f WTs,in a'wind farm. In [2.4, 2.5], an OPF model based
on reactive power dispatch method'is gstablished, aiming to reduce systems power losses, including
WTs and collector cablegquipmentt, Iny[2.6], an OPF method is used to calculate the voltage
reference of the pilot bus,then the totalireactive power demand is determined through a PI control
and dispatched proportionallyfto each WT, In)2.7], based on model predictive control (MPC), a
coordinated optimal control modelwith different time scales for reactive power compensation
equipment in a wind fapfiiis €stablishedJaiming te coordinate different reactive power compensation
equipment, reduce voltage deviation, and improve system reactive power margin.

In solvingathe OPEdmodel, ithe particle swarm optimization algorithm is used to solve the
optimal'voltage regulation moedel in [2.10]. In [2.11], a sensitivity analysis combined with the MPC
method is,propased to solvethe'wind farm OPF model. [2.12, 2.13] divided wind farms into clusters,
and a“distributed algorithm is used to solve to improve the speed. In [2.14], a deep learning
intelligent voltage regulation framework was established, which used historical data to train the
model and realized online response. Among the above methods, nonlinear solution methods have
high solution aeeuracy, but it is not easy to guarantee real-time performance. The sensitivity-based
linearization method improves the solution speed but cannot take the accuracy of the solution into
account. The data-driven method relies on a large amount of historical data.

To sum up, though there have been researches on the model and solution of Q-V coordinated
control for wind farms, two major problems remain: the solution time and accuracy are difficult to
guarantee due to the nonlinear characteristics of the OPF model; the traditional machine learning
method highly relies on real-world historical data.

Given this, this paper proposes a distributed Q-V control method for the offshore wind farm
based on multi-agent deep reinforcement learning (MADRL). Firstly, a reactive optimal power flow
(Q-OPF) model of the wind farm considering node voltage deviation is established. Secondly, based
on the Q-OPF model, the Q-V control problem is formulated as a Markov game where the WTs on
a feeder are modeled as an adaptive agent. Thirdly, the policy networks of each agent are trained by
the advanced multi-agent deep deterministic policy gradient (MADDPG) method. Then, the trained
policy networks are executed in a distributed manner to control the voltage. The simulation results



using random output data of WTs show that the proposed method can effectively improve the
voltage stability of wind farms without relying on historical data and has better model solution
accuracy and speed performance than traditional methods.

The rest of the paper is organized as follows. In section I, the Q-V coordinated control model
of the offshore wind farm is presented. Section III describes the proposed method. In section 1V, the
simulation results are illustrated in detail. Finally, Section V concludes this paper.

II. PROBLEM FORMULATION

The structure of the wind farm is shown in Fig.1. The SMW high-speed permanent magnet
wind turbine is adopted. The output voltage of the WT is 0.69kV, which is boosted to 35kV by its
transformer. All WTs are connected to a three-phase double winding transformer through a
submarine cable and then connected to the onshore power grid through a submarine AC transmission
cable. The lower part of Fig.1 shows the structure of the WT. The parallel ﬁlll power converter is
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FIG. 1. THE ARCHITECTURE OF THE TARGET OFFSHORE WIND FARM

The Q-V coordinated control problem is formulated as follows:
1) Object
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where (1) is the objective function to minimize the sum of the voltage deviation
and U, donate the voltage and the rated voltage of the WT of node i i

i-ref

o, is the voltage phase difference between nodes i and j;
apparent power that generated by the WT of node i and its lower and are donated by
Simnand S, ;similar to that, Q_,,and Q. are the lower and upperlimits of the reactive power

of the WT, U, and U, are the lower and upper limits of the voltag e WT.
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in Fig. 2, which is based on the
ethod. It contains three main steps,
formulating the decomposed sub-networks as
neural network (DNN) of the agents for

III. PROPOSED M AGEN
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namely: 1) grouping the WTs o S
agents in a Markov ga
coordinated voltage cont
A. Sub-network Groupi
In this work, we group the
connection on their acti 0 i nd voltage. Meanwhile, they are close to each

S: the statejset S, contains the states for all agents. For agent j, s/ denotes for its state at
time step t, which also means the local observation of sub-network j. s/ includes {(U,,P', AP")},
where AP is the forward difference of active power, i is the index of the node that is located in

sub-network j.
A: the action set A, contains the actions for all agents. For agent j, the action at time step t,

a) is {Q'}, where i is the index of the node that is located in sub-network j.
R: ' eR is the immediate reward the agent j obtains after the action a/ is executed. In this

context, all the agents share the same reward: r,

NS
=—>"(U;-U,_)* which represents the total
i=1

voltage deviation of all WTs at time step t; to lead the agents make a decision that meets the power
limits, the overflow of the apparent power of each WT is added to the reward; therefore, the final
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reward function is 1, == [W,(U; =U,_)* +K (S, — S )], Where w; and k are the weights to
i=1

balance the importance of voltage deviation as power limits.
At time step t, agent j makes its decision a/ based on the local observation s! of sub-
network j. When all agents complete their actions, they obtain a shared reward r,, and then the

system transfers to the next state. This is an MG and the goal of each agent is to learn a policy,
which maps its local observation s/ to action a'/ in order to maximize the discounted

;
cumulative reward from the current time-step onward, Z 7', where y€[0,1) is the discount
k=t

factor that balances the importance between the future and immediate reward.
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rithm is developed to solve the MG in the Q-V coordinated control.
is modeled as an agent, which is composed of the actor and critic DNNs. The
actor, w he policy network, maps the local observation s/ to action a/ . The critic maps

global infort L (S,, A) from all agents to a scalar, which is a judgment of action a/

considering theimpact on other agents. The coordinated control strategy is achieved by adopting a
centralized training framework, among which the actor and critic networks of each agent are trained
against each other iteratively till the critic provides a suitable judgment and the actor can make
decisions with reduced voltage deviation.

For the agent j, let the actor network be parameterized by ) and the critic network be
parameterized by Q) ; therefore, we have a’ =) (s/) to be the decision made by the actor and
QJ(s),a,...,a),..,a") to be the output of the critic network, where N is the number of agents.
Meanwhile, the algorithm introduces a target actor-critic network x', and Q')to the agent in
order to prevent the unstableness of the training process. Also, each agent has a replay buffer, which
is in charge of storing the transitions (s',a’,r’,s;). The mini-batch experiences are sampled at

each time step to calculate the gradient and optimize the parameters of networks. This mechanism
helps break the correlation between data and improves the stability of the training process.



Table 1.
Algorithm: MADDPG for N agents in a wind farm
For each agent j, randomly initialize parameters of actor network ) and critic network Q]

For each agent j, initialize parameters of the target network, ') < u),Q") < Q)
for episodee=1,2, ..., Hdo
Initialize a random process ¢ for action exploration
For each agent j, receive initial state sJ
for time stept=1,2, ..., T do
For each agent j, select action a' =u,(s!)+¢
Execute actions A = (atl,...,a[",...,atN) and get observation S, , reward R, , and new
state S,
Store the experience (s/,a/,r’,s),) in the replay buffer D
if t % learning_period == 0 do
for agentj=1,2,...,Ndo
Randomly sample a mini-batch experience B fr
Set ytJ = rtJ +7Q';(Stj+l’a ?(.+1""’altj+l""’alt+l) 4
Update critic network by minimizing the

1 - - _
L(6;) = EZ(V.’ -Qi(s! a,.a
Update actor network using the mini-batch polic

V)3 = £ TV, SV, QU el )],
end for
Update target network: ') < 1)
end if
end for

end for
D. Real-time Voltage Control of,
When the training p sis
network of each agent is
network. The real-time reacti

1y Q< 1Q)+(1-7)Q7

eters of DNN are fixed, and only the actor
regulation. Each agent is in charge of a sub-
heme of the proposed approach is shown in Table
ion of other agents’ policies during the training
explicitly modeling of other agents’ decision-

al-time distributed Q-V control

For eacl j, load the parameters of actor network )
, Tdo
2, ...,Ndo

Obtdin the local observation s/
Calculate action: a’ =z} (s/)
end for
Concatenate the actions A =(&,...,a/,...,a")
executed action A

end for
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Fig. 3. Centralized tralnlng and decentralized execution of the proposed MADDPG-based Q-V
coordinated control

IV NUMERICAL RESULTS
In this section, simulation results are provided to evaluate the performance of the pro
on the IEEE 14-bus system. The target voltage of WTs is set at 1.03 p.u. and then at 1.0
the generality of the proposed MADDPG-based method.
A. Simulation Setup

evaluation index of the policy network, where U, denote

active power data have 440 steps, including a power jump at around t th step. The proposed
approach is 1mplemented in Python with PaddlePaddle. The power flow is calculated by Pypower. Baidu

TABLE III. PARAMETE‘)F THE EP OFESHORE WIND FARM
v

PARAMETERS

35KVCABLE ‘=o. MH/KM; C=0.1805 MF/KM
35KV/220KV 005 P X=0.12 DU
TRANSFORMER ”

220Kk VCABLE ; 1=0.446 MH/KM; C=0.155 MF/KM

S OF THE PROPOSED METHOD

VALUE
32
EPLAY BUFFER SIZE 100000
ISCOUNT FACTOR 0.75
ATE COEFFICIENT 0.001
ICY UPDATE PERIOD 3
WEIGHTS OF THE VOLTAGE ON A FEEDER 1:0.2:1.8
LEARNING RATE OF ACTOR NETWORK 0.001

LEARNING RATE OF CRITIC NETWORK 0.001
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he target wind farm.

chs on the training data to learn the coordinated

ag ence curve of the cumulative reward is plotted
@' proach could not make balanced decisions at the
procedure and therefore achieves low reward. With the training process

¢ proposed method can learn the coordinated control strategy.
s the distribution of the WTs’ voltage with the target at 1.03 p.u., all of them are in

arange 029 p.u. to 1.031 p.u., with the AVD at 3.6x10“p.u..
Fig. 7 gvoltage of five WTs on the first feeder, whose policy network is trained by
DDPG and propesed MADDPG-based method respectively. In the upper part of Fig. 7, the voltage

of five WTs experience a jump due to the jump of their active power; apparently, the policy network
trained by DDPG cannot handle such sudden change at a short time. In the lower part of Fig. 7, in
the contrast, the policy network trained by proposed MADDPG-based method can effectively
reduce the potential voltage jump.

Fig.8 shows the reactive power of each WT on the first feeder, which is also the action of the
first agent in the MG; it shows that every dimensions of the action are changing actively to minimize
voltage deviation.

To validate the generality of the proposed MADDPG-based method, we set the reference
voltage at 1.00 p.u. and train the agents using the proposed MADDPG-based method. As it shown
in Fig. 9 all of them are in a range from 0.999 p.u. to 1.001 p.u., with the AVD at 3.3x10*p.u..

D. Performance Improvement of Proposed Method



As shown in Table V and Fig. 10, when the target voltage was set at 1.03 p.u., the AVD is
decreased by 33.33%; when the target voltage was set at 1.00 p.u., the AVD is decreased by 36.54%.
Due to the downsizing of DNN, the solving time is shortened by 12.12%.

Table VI and Fig. 11 show the statistical dispersion of the voltage. For the target voltage at 1.03 p.u.
and 1.00 p.u., the WTs’ average voltage with control policy train by the proposed method is 1.0300
p.u. and 1.0000 p.u. respectively; the voltage’s standard deviation is 4.99x10*p.u. and 5.12x10*
p.u. respectively, which shows that the proposed MADDPG-based method has better voltage control
capacity.

Table V. Voltage deviation of each method

Control Target AVD Solving
Policy Voltage (x10-4 pa.) Time Algorithm
Number (p.u.) p-u. (ms)
No Control / / / /

1 1.03 5.4 3.3 DDPG
2 1.03 3.6 29 MADDPG
3 1.00 52 /
4 1.00 3.3 /

Table VI. Voltage statistical dispersion of each

Control Target Average
Policy Voltage Voltage
Number (p.u.) (p.u.)
No Control / 1.0767
1 1.03 1.0299 DDPG
2 1.03 1.0300 4.99 MADDPG
3 1.00 1.0001 21.45 DDPG
4 1.0000 MADDPG

100 150 200 250 300 350 400 450 500
Episode (x100)
1g. 5. The evolution of the reward during the training procedure.




1.033 -
3 1,032
=9

3103
g.

Time

Time

WT Number

Fig. 6. The voltage distribution of the wind fa

WT Number

1.034
N voltag :
\ / active power jum

1.032
) e~
a .
> 1.03
S
=

)
a
(0]
O) -
8
o
>
1.028 - —#1
—#2
Train by MADDPG-based —#3
1.026 Method —#4
—#5
0 50 100 150 200 250 300 350 400

Time



Fig. 7. Simulation results for voltage of WTs on the first feeder with aim at 1.03 p.u., using DDPG
and proposed MADDPG-based method respectively.
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Fig. 9. Simulation results for voltage of WTs on the first feeder with aim at 1.00 p.u., using the
proposed MADDPG-based method.
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Fig. 10. Comparison of DDPG method and proposed MADDPG-based method,
means better control policy.
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V CONCLUSION
ol architecture is proposed in this paper for distributed voltage control in an
offshore win rained by proposed MADDPG-based algorithm, the policy network efficiently

control each WTs” voltage near the reference voltage using Q-V coordinated control. With the target
of minimizing voltage deviation and apparent power overflow, each agent/feeder controls its WTs’
reactive power only based on local observation, i.e. voltage, active power, and its forward difference.
Therefore, the method significantly reduces the requirements of communications and knowledge of
system parameters. In the future work, more consideration could be taken in, e.g. power loss
between to nodes; furthermore, the reference voltage could also be add into observation.





